Datasets

subject: Agronomy date: 2020

Total is 18 Results
Tile discharge, dissolved reactive phosphorus concentrations and loads for the WQFS (Water year 2011 – 2013).

10.4231/BJHE-3239

Jeffrey J. Volenec ORCID logo , Margaret Gitau ORCID logo , Nicole S. De Armond , Pauline Welikhe , Ronald F. Turco ORCID logo , Sylvie M. Brouder ORCID logo

11/24/2020

The data included here are for the WQFS tile discharge, DRP concentrations and loads for the Miscanthus x giganteus, continuous maize with residue removal, and switchgrass variety Shawnee treatments only.

Agronomy Dissolved reactive phosphorus P sink soils P source soils Phosphorus loss Tile discharge Water Quality water quality data Water Quality Field Station

R Pipeline for Calculation of APSIM Parameters and Generating the XML File

10.4231/69H7-CV75

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

A pipeline to generate the XML parameter file for APSIM was developed in R. The files and R codes are reported in "R Pipeline for Calculation of APSIM Parameters and Generating the XML File".

Agronomy APSIM Crop Growth Models APSIM Pipeline Remote Sensing

2018 West Lafayette Simulation of 18 Sorghum Hybrids

10.4231/KMK0-J993

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

The model calibration step compares the APSIM simulated results with measured phenotypes in field trials. Parameter adjustments are reported in “SorghumXMLOutputUQ”.

2018 Sorghum Simulation Agronomy APSIM Crop Model Remote Sensing

2015 West Lafayette Simulation of 18 Sorghum Hybrids

10.4231/0NX5-RT34

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

The APSIM models from 2018 West Lafayette were validated by comparing simulated and observed results of experiments conducted in 2015 West Lafayette.

2015 Sorghum Crop Simulation Agronomy Biophysical crop models Remote Sensing

2017 West Lafayette Simulation of 18 Sorghum Hybrids

10.4231/6NW4-TB31

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

The calibrated APSIM models from 2018 West Lafayette were validated by comparing simulated and observed results of experiments conducted in 2017 West Lafayette.

2017 Sorghum simulation Agronomy APSIM Crop Model Remote Sensing

Texas Scenario Simulation of Sorghum Hybrids Using Historical Weather Data

10.4231/PRS2-AC22

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

In the Texas scenario simulations, the physiology parameters from 2018 West Lafayette were used to run APSIM simulations in Bushland, TX using multi-year historical weather data.

Agronomy APSIM Forage sorghum crop models Texas Scenario Simulation

West Lafayette Scenario Simulation of Sorghum Hybrids Using Historical Weather Data

10.4231/63GJ-CJ23

Kai-Wei Yang , Mitchell Tuinstra ORCID logo , Scott Chapman

12/15/2020

In the West Lafayette scenario simulations, the physiology parameters from 2018 West Lafayette were used to run APSIM simulations in West Lafayette using multi-year historical weather data.

Agronomy APSIM Forage sorghum modelling West Lafayette Scenario Simulation

Genetic and environmental variation in alfalfa forage quality from variety testing experiments conducted in North America between 1986 and 1999

10.4231/02PR-9H36

Daniel Wiersma , Jeffrey Volenec ORCID logo , Stanislav Pejša ORCID logo , Sylvie Brouder ORCID logo , Wayne G. Hartman

06/15/2020

The dataset contains data used to analyze genetic and environmental effects on alfalfa forage quality and corresponding forage yield. Data were compiled from variety tests conducted by University researchers in the US and Canada from 1986 through...

acid detergent fiber ADF Agronomy Alfalfa alfalfa_db crude protein digestibility Forage quality genetic variation Lucerne Medicago NDF neutral detergent fiber Nutritive value variety Yield components

Display #

Results 1 - 10 of 18