Datasets

Total is 1239 Results
32-digit values of the first 100 recurrence coefficients using the Bose-Einstein weight function: w(x)=[x/(e^x-1)]^4 computed by the SOPQ routine sr_boseeinstein(100,4,32)

10.4231/R7000013

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Bose-Einstein weight function w(x)=[x/(e^x-1)]^4 on R_+} are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 4 of "Variable-p...

Bose-Einstein distribution Computer Science Equation Table Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the SOPQ routine sr_fermidirac(100,1,32)

10.4231/R7C82765

Walter Gautschi

04/24/2014

32-digit values of the first 100 recurrence coefficients for orthogonal polynomials relative to the Fermi-Dirac weight function w(x)=1/(e^x+1) computed by the routine sr_fermidirac(100,1,32). See W. Gautschi. Repeated modifications of orthogonal polynomial...

Computer Science Equation Table Fermi Dirac weight Function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^{10}) computed on R by the SOPQ routine sr_freud(100,0,10,32)

10.4231/R7F769GC

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^10}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision rec...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

10.4231/R7PN93HS

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^4}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

10.4231/R7Z60KZ0

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^6}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematical Concepts Mathematics OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

10.4231/R7TD9V74

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^8}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

10.4231/R7X63JTM

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the half-range Hermite weight function w(x)=exp(-x^2) on R_+} are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Variable-...

Computational methods Computer Science Equation Table Gaussian quadrature Hermite weight function Hilbert Transforms Integral Transforms Mathematics Matlab Numerical integrations OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

10.4231/R70Z715M

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^-1/2}(1-x)^-1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "G...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

10.4231/R79G5JRN

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^-1/2}(1-x)^1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Ga...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

10.4231/R7SF2T39

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^1/2}(1-x)^-1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Ga...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

Display #

Results 1 - 1239 of 1239