Datasets

subject: Neuroscience type: dataset

Total is 20 Results
Supporting data for Ma et al. 2016 G3 publication

10.4231/R7PG1PQR

Jingqun Ma , Pete E Pascuzzi , Vikki Marie Weake ORCID logo

02/20/2017

Supporting and raw data for Figures 1 - 5 and Figure S1 from: Ma et al. (2016) Transcriptome Profiling Identifies Multiplexin as a target of SAGA Deubiquitinase Activity in Glia.... G3 (Bethesda). PMID: 27261002.

axon guidance Biochemistry Drosophila glia Neuroscience nonstop RNA_seq SAGA sgf11 Transcriptome

Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum

10.4231/STQE-9A91

Estuardo Robles ORCID logo

12/16/2021

In this study we demonstrate that torus longitudinalis feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. These findings reveal a novel role for the zebrafish torus longitudinalis.

biological sciences fluorescence microscopy Matlab Neuroscience research Vision zebrafish

A genetic labeling system to study dendritic spine development in zebrafish

10.4231/0BQQ-DV64

Elisabeth C DeMarco , Estuardo Robles ORCID logo , George R Stoner

08/15/2022

We have developed a genetic labeling system in zebrafish to enable high resolution in vivo imaging of dendritic spine dynamics during larval development.

biological sciences fluorescence microscopy Neuroscience Research Data Depot

Population-specific brain atlases for early-to-middle adolescent collision-sport athletes

10.4231/6BAR-6W02

Apekshya Chhetri , Ho-Ching Yang ORCID logo , Joseph V Rispoli ORCID logo , Pratik Kashyap , Thomas M Talavage ORCID logo , Wenbin Zhu , Yukai Zou ORCID logo

08/03/2020

Population-specific brain atlases for early-to-middle adolescent collision-sport athletes in the longitudinal database of Purdue Neurotrauma Group, including cortical and white matter parcellations, a T1-weighted template, and a DTI template.

Adolescents Atlasing Biomedical Engineering Brain Informatics Morphometrics MRI Neuroscience NIfTI Spatial Normalization Statistical Methods Trauma Workflow

Population-specific brain atlas for adolescent collision-sport athletes in Purdue Neurotrauma Group longitudinal database

10.4231/XGNK-JX08

Ho-Ching Yang ORCID logo , Joseph V Rispoli ORCID logo , Thomas M Talavage ORCID logo , Wenbin Zhu , Yukai Zou ORCID logo

11/06/2019

Unbiased population-specific brain atlas for local adolescent collision-sport athletes in the longitudinal database of Purdue Neurotrauma Group, including cortical and white matter parcellations, a T1-weighted template, and a DTI template.

Adolescents Atlasing Biomedical Engineering Brain Informatics Morphometrics MRI Neuroscience NIfTI Spatial Normalization Spatial Warping Statistical Methods Trauma Workflow

Population-specific brain atlases for early-to-middle adolescent collision-sport athletes

10.4231/RTXE-0Q70

Apekshya Chhetri , Ho-Ching Yang ORCID logo , Joseph V Rispoli ORCID logo , Pratik Kashyap , Thomas M Talavage ORCID logo , Wenbin Zhu , Yukai Zou ORCID logo

10/28/2020

Population-specific brain atlases for early-to-middle adolescent collision-sport athletes in the longitudinal database of Purdue Neurotrauma Group, including cortical and white matter parcellations, T1-weighted templates, and a DTI template.

Adolescents Atlasing Biomedical Engineering Brain Informatics Morphometrics MRI Neuroscience NIfTI Spatial Normalization Statistical Methods Trauma Workflow

Competitive Tuning of Ca2+/Calmodulin-Activated Proteins Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity

10.4231/R7VX0DS0

Matthew C Pharris , Tamara L. Kinzer-Ursem ORCID logo

07/30/2018

Code for the basic 4-state competitive binding model that builds on previous work by incorporating an additional competitor for calmodulin along with a number of downstream proteins. Also include is sample code for global sensitivity analysis...

Biomedical Engineering Calmodulin Neuroscience

A Multi-state Model of the CaMKII Holoenzyme using MCell 3.3

10.4231/MBPK-D277

Matthew C Pharris , Tamara L Kinzer-Ursem ORCID logo

03/11/2019

This model uses a specialized rule-based syntax in MCell 3.3 to model the twelve-subunit CaMKII holoenzyme without inducing combinatorial explosion. The model allows us to explore the regulation of CaMKII activation and autophosphorylation.

Biomedical Engineering Calmodulin Computational Modeling Neuroscience Protein Signaling

Display #

Results 1 - 10 of 20