Datasets

subject: Calmodulin subject: Biomedical Engineering

Total is 6 Results
A Multi-state Model of the CaMKII Holoenzyme using MCell 3.3

10.4231/MBPK-D277

Matthew C Pharris , Tamara L Kinzer-Ursem ORCID logo

03/11/2019

This model uses a specialized rule-based syntax in MCell 3.3 to model the twelve-subunit CaMKII holoenzyme without inducing combinatorial explosion. The model allows us to explore the regulation of CaMKII activation and autophosphorylation.

Biomedical Engineering Calmodulin Computational Modeling Neuroscience Protein Signaling

A Multi-state Model of the CaMKII Holoenzyme using MCell 3.3

10.4231/MV0Z-8Z57

Matthew C Pharris , Tamara L Kinzer-Ursem ORCID logo

07/29/2019

This model uses a specialized rule-based syntax in MCell 3.3 to model the twelve-subunit CaMKII holoenzyme without inducing combinatorial explosion. The model allows us to explore the regulation of CaMKII activation and autophosphorylation.

Biomedical Engineering Calcium Calmodulin Computational Modeling Kinase Neuroscience Protein Signaling Rule-Based Modeling Synaptic Plasticity

Next Generation Calmodulin Affinity Purification Data

10.4231/R7Q81B9G

Julia Fraseur , Tamara L Kinzer-Ursem ORCID logo

06/01/2018

Coomassie-stained gels used in semi-quantitative analysis of purified calcineurin from calmodulin Sepharose resins.

Biomedical Engineering Calcineurin Calmodulin Protein

Competitive Tuning of Ca2+/Calmodulin-Activated Proteins Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity

10.4231/R7ST7N11

Matthew C Pharris , Tamara L. Kinzer-Ursem ORCID logo

02/16/2018

Code for the basic 4-state competitive binding model that builds on previous work by incorporating an additional competitor for calmodulin along with a number of downstream proteins. Also include is sample code for global sensitivity analysis...

Biomedical Engineering Calmodulin Neuroscience

Mathematica Files: Competitive tuning: competition’s role in setting the frequency-dependence of Ca2+-dependent proteins

10.4231/R7154F7Q

Daniel Romano , Matthew C Pharris , Neal Patel , Tamara Kinzer-Ursem ORCID logo

09/08/2017

We study the competition among seven well-studied neuronal proteins for their common binding partner, calmodulin. We find that competition narrows and shifts the range over which proteins can be activated.

Biomedical Engineering Calcineurin Calmodulin Computational Biology Mathematica Signal Transduction

Competitive Tuning of Ca2+/Calmodulin-Activated Proteins Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity

10.4231/R7VX0DS0

Matthew C Pharris , Tamara L. Kinzer-Ursem ORCID logo

07/30/2018

Code for the basic 4-state competitive binding model that builds on previous work by incorporating an additional competitor for calmodulin along with a number of downstream proteins. Also include is sample code for global sensitivity analysis...

Biomedical Engineering Calmodulin Neuroscience

Display #

Results 1 - 6 of 6