Datasets

subject: deep learning type: dataset

Total is 15 Results
River Obstacle Segmentation En-route By USV Dataset (ROSEBUD)

10.4231/MMJ2-NH88

Jalil Francisco Chavez Galaviz , Jianwen Li , Nina Mahmoudian ORCID logo , Reeve David Lambert ORCID logo , Zihan Wang

06/12/2022

This dataset contains stills from video taken on Sugar Creek and the Wabash River in the US state of Indiana. Images are hand annotated to provide training and testing data for semantic segmentation networks.

autonomous and connected vehicles deep learning Mechanical Engineering River Robotics semantic segmentation

Aerial Fluvial Image Dataset (AFID) for Semantic Segmentation

10.4231/B129-XD47

Li-Fan Wu , Nina Mahmoudian ORCID logo , Zihan Wang

07/20/2022

816 2K/2.7K per-pixel annotated images with 8 classes: River, Boat, Bridge, Sky, Forest vegetation, Dry sediment, Drone self and Obstacle in river. Fluvial scenes are from Wabash River and Wildcat Creek in Indiana, USA.

Artificial Neural Network (ANN) autonomos vehicles Collision Avoidance deep learning drone Image Dataset Mechanical Engineering navigation RGB image dataset River Robotics semantic segmentation Unmanned Aerial Vehicle Wabash River

Wheat spike blast image classification using deep convolutional neural networks

10.4231/P0Y7-3428

Carlos Gongora , Christian D Cruz ORCID logo , Darcy Telenko , Jian Jin , Mariela Fernandez-Campos ORCID logo , Mohammad Jahanshahi , Tao Wang , Yuting Huang

04/30/2021

The folder includes i) a wheat spike blast image classification CNN model trained to automatically quantify and classify disease severity, ii) the generated datasets that include images of wheat spike blast severity levels under controlled...

Blast Botany and Plant Pathology CNN deep learning disease Magnaporthe oryzae plant disease phenotyping Plant phenotyping Python Wheat wheat blast

Visualized layer-wise visual features in deep residual neural network

10.4231/R7PR7T1G

Haiguang Wen , Junxing Shi , Wei Chen , Zhongming Liu ORCID logo

06/29/2017

Deep residual neural network is a brain-inspired computational model. 50 layers of neuron-like computational units are stacked into a bottom-up hierarchy. Features encoded at units are visualized for intuitively understanding the internal...

Biomedical Engineering deep learning natural vision Neural encoding Object Recognition

Display #

Results 1 - 10 of 15