Datasets

subject: Biomedical Engineering

Total is 44 Results
A Multi-state Model of the CaMKII Holoenzyme using MCell 3.3

10.4231/MBPK-D277

Matthew C Pharris, Tamara L Kinzer-Ursem, 0000-0001-7343-115X

03/11/2019

This model uses a specialized rule-based syntax in MCell 3.3 to model the twelve-subunit CaMKII holoenzyme without inducing combinatorial explosion. The model allows us to explore the regulation of CaMKII activation and autophosphorylation.

Biomedical Engineering Calmodulin Computational Modeling Neuroscience Protein Signaling

A Multi-state Model of the CaMKII Holoenzyme using MCell 3.3

10.4231/MV0Z-8Z57

Matthew C Pharris, Tamara L Kinzer-Ursem, 0000-0001-7343-115X

07/29/2019

This model uses a specialized rule-based syntax in MCell 3.3 to model the twelve-subunit CaMKII holoenzyme without inducing combinatorial explosion. The model allows us to explore the regulation of CaMKII activation and autophosphorylation.

Biomedical Engineering Calcium Calmodulin Computational Modeling Kinase Neuroscience Protein Signaling Rule-Based Modeling Synaptic Plasticity

MicroCT based FE model of bone core with tissue heterogeneity and anisotropy

10.4231/R7CC0XX4

Joseph Wallace, Matthew R Allen, Max A Hammond, Thomas Siegmund, 0000-0001-8162-9609

06/26/2018

This publication contains a finite element model for the analysis of bone core under consideration of bone tissue heterogeneity and tissue anisotropy.

Biomedical Engineering Bone Finite Element Analysis Mechanical Engineering

Competitive Tuning of Ca2+/Calmodulin-Activated Proteins Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity

10.4231/R7VX0DS0

Matthew C Pharris, Tamara L. Kinzer-Ursem, 0000-0001-7343-115X

07/30/2018

Code for the basic 4-state competitive binding model that builds on previous work by incorporating an additional competitor for calmodulin along with a number of downstream proteins. Also include is sample code for global sensitivity analysis...

Biomedical Engineering Calmodulin Neuroscience

Competitive Tuning of Ca2+/Calmodulin-Activated Proteins Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity

10.4231/R7ST7N11

Matthew C Pharris, Tamara L. Kinzer-Ursem, 0000-0001-7343-115X

02/16/2018

Code for the basic 4-state competitive binding model that builds on previous work by incorporating an additional competitor for calmodulin along with a number of downstream proteins. Also include is sample code for global sensitivity analysis...

Biomedical Engineering Calmodulin Neuroscience

Display #

Results 1 - 10 of 44