Datasets

subject: Machine Learning type: dataset

Total is 18 Results
A Machine Learning Approach to Design of Aperiodic, Clustered-Dot Halftone Screens via Direct Binary Search

10.4231/AMGQ-0T59

Itamar Roth , Jan Allebach , Jiayin Liu ORCID logo , Orel Bat Mor , Oren Haik , Shani Gat , Tal Frank , Yitzhak Yitzhaky

06/01/2022

This dataset contains two parts: one has halftone patches that were used to predicts the quality level and scale using machine learning methods. The second part contains full versions of halftone images so viewers can zoom in to see the details.

direct binary search Electrical and Computer Engineering Halftone screen Machine Learning

Data for Characterization of Acoustic Emissions from Analogue Rocks using Sparse Regression-DMDc

10.4231/4K64-4818

Charles Fieseler , Chven Mitchell , Laura J Pyrak-Nolte ORCID logo , Nathan Kutz

06/14/2022

Acoustic waveforms collected during the monitoring of moisture loss in synthetic rock samples composed of mortar, and mortar with either distributed clay or localized clay, under ambient laboratory conditions.

acoustic signals clay cracking Fractures Machine Learning Physics

Genome-wide, Organ-delimited gene regulatory networks (OD-GRN) provide high accuracy in candidate Transcription Factor (TF) selection across diverse processes

10.4231/50R5-EM83

Karen Hudson , Kranthi K Varala ORCID logo , Ying Li

01/04/2024

Organ-specific gene expression datasets that include hundreds to thousands of experiments allow reconstruction of gene regulatory networks and discovery of transcriptional regulators various pathways and processes.

Arabidopsis thaliana Gene regulatory networks k-nearest neighbor (kNN) linear support vector machines (SVM) Machine Learning Systems biology

Modeling the Sea Level Changes in Guam

10.4231/0A0F-7A84

Avnika Manaktala ORCID logo

10/14/2019

This project works on understanding the different statistical models that are available to analyze and predict mean sea level changes in Guam.

Climate Change Data Education Earth and Atmospheric Sciences FAIR Data Machine Learning Sea level rise Statistical analysis Statistical Methods

Data of global wetland methane emissions from artificial neural network modeling v1.0

10.4231/3YX4-EY30

Licheng Liu ORCID logo , Qianlai Zhuang ORCID logo

01/21/2020

Source code of an ANN model, site level data, input data, output data and visualization results, which are presented in the manuscript "Inventorying Global Wetland Methane Emissions Based on In Situ Data and an Artificial Neural Network...

Artificial Neural Network (ANN) Atmospheric Chemistry Modeling Biogeochemistry Earth and Atmospheric Sciences Interactive Data Language (IDL) Machine Learning Matlab Methane Dynamics Model (MDM) Methane Emission

Code and Dataset for TARP Detection Benchmarks

10.4231/R7ST7MVC

Kelsie Larson , Mireille Boutin ORCID logo

05/16/2017

The TARP method uses random projections, followed by threshold classifications, to construct receiver-operating characteristic curves and uncover underlying structure in the given data.

Electrical and Computer Engineering Machine Learning Receiver Operating Characteristics ROC curve Signal Processing Target Detection

Display #

Results 1 - 10 of 18