subject: Walter Gautschi Archives subject: Modification algorithms for orthogonal polynomials
10.4231/R7JS9NFN
05/09/2017
32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^(1/2)*exp(-x)*log(1+1/x) on [0,1]
Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7ZW1HX0
05/09/2017
32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=-1/2
Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7PG1PR6
05/09/2017
32-digit values of the first 65 recurrence coefficients for the weight function w(x)=x^a*exp(-x)*log(1+1/x) on [1,Inf], a=1/2
Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7HH6H1D
11/22/2016
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=((1-om2*x^2)*(1-x^2))^(-1/2) on [-1,1], om2=1/2
Chebyshev weight function Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7Q81B2B
11/29/2016
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=-1/4
Computer Science Hermite weight function Jacobi weight functions Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives
10.4231/R7KH0K95
11/29/2016
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^(2*mu)*exp(-x^2) on [0,Inf], mu=1/4
Computer Science Hermite weight function Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7NG4NKC
10/28/2016
A stable and efficient discretization procedure is developed to compute recurrence coefficients for orthogonal polynomials whose weight function is a polynomial cardinal B-spline of order greater than, or equal to, one.
B-spline Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials polynomials Walter Gautschi Archives weight functions
10.4231/R7V122R6
10/19/2016
32-digit values of the first 100 recurrence coefficients for the (normalized) weight function w(x)=c*x^(-5/6)e^(-x)Ai((3x/2)^(2/3)) on [0,Inf], c=2^(-1/6)*3^(1/6)/pi^(1/2), where Ai is the Airy function
Airy weight function Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Quadrature and cubature formulas Walter Gautschi Archives
10.4231/R7H70CSK
12/08/2016
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=x^a*[log(1/x)]^b on [0,1], a=1/2, b=3
Computer Science Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
10.4231/R7N014H9
12/08/2016
32-digit values of the first 100 recurrence coefficients for the weight function w(x)=exp(-1/x) on [0,c], c=2/3
Computer Science Gauss quadrature rules Mathematics Modification algorithms for orthogonal polynomials Orthogonal polynomials Walter Gautschi Archives weight functions
Display #
Results 1 - 10 of 230