Datasets

subject: Machine Learning

Total is 18 Results
Code and Dataset for TARP Detection Benchmarks

10.4231/R7ST7MVC

Kelsie Larson , Mireille Boutin ORCID logo

05/16/2017

The TARP method uses random projections, followed by threshold classifications, to construct receiver-operating characteristic curves and uncover underlying structure in the given data.

Electrical and Computer Engineering Machine Learning Receiver Operating Characteristics ROC curve Signal Processing Target Detection

Data for Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins

10.4231/0PG5-KC30

Pin-ching Li , Sayan Dey ORCID logo , Venkatesh Mohan Merwade ORCID logo

01/23/2023

This resource contains the data used in the study "Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins" published in Water Resources Research (doi: 10.1029/2023WR034464)

Artificial Neural Network (ANN) covariate shift Hydrology Machine Learning prediction in ungauged basin Random Forest streamflow prediction

Codes for Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins

10.4231/B783-2C47

Pin-ching Li , Sayan Dey ORCID logo , Venkatesh Mohan Merwade ORCID logo

01/23/2023

This resource contains codes used in the study "Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins" published in Water Resources Research (doi: 10.1029/2023WR034464)

Artificial Neural Network (ANN) Machine Learning Random Forest streamflow prediction

A deep learning neural network to extract of P- and S-wave transit times from Vertical Seismic Profile (VSP)

10.4231/TT0F-KH40

Douglas R Schmitt ORCID logo , Oumeng Zhang ORCID logo

07/23/2024

This archive contains the training dataset and the Python code to train a deep learning neural net that aims to extract separately P and S wave arrival transit times from synthetic common shot gathers (CSG) in a deviated borehole geometry.

deep learning Machine Learning Machine Learning and Geophysical Signals seismic behavior

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information

10.4231/SCF2-QJ02

Koushiki Basu ORCID logo , Nicholas Huls , Shan Lu , Tonglei Li ORCID logo

11/06/2024

We implemented the Manifold Embedding of Molecular Surface approach, which retains the quantum mechanical characteristics of molecules, to predict a drug's likelihood of binding to cytochrome P450 enzymes by deep learning.

deep learning Informatics Machine Learning Molecular Pharmacology

Genome-wide, Organ-delimited gene regulatory networks (OD-GRN) provide high accuracy in candidate Transcription Factor (TF) selection across diverse processes

10.4231/50R5-EM83

Karen Hudson , Kranthi K Varala ORCID logo , Ying Li

01/04/2024

Organ-specific gene expression datasets that include hundreds to thousands of experiments allow reconstruction of gene regulatory networks and discovery of transcriptional regulators various pathways and processes.

Arabidopsis thaliana Gene regulatory networks k-nearest neighbor (kNN) linear support vector machines (SVM) Machine Learning Systems biology

A Machine Learning Approach to Design of Aperiodic, Clustered-Dot Halftone Screens via Direct Binary Search

10.4231/AMGQ-0T59

Itamar Roth , Jan Allebach , Jiayin Liu ORCID logo , Orel Bat Mor , Oren Haik , Shani Gat , Tal Frank , Yitzhak Yitzhaky

06/01/2022

This dataset contains two parts: one has halftone patches that were used to predicts the quality level and scale using machine learning methods. The second part contains full versions of halftone images so viewers can zoom in to see the details.

direct binary search Electrical and Computer Engineering Halftone screen Machine Learning

Display #

Results 1 - 10 of 18