Datasets

subject: Machine Learning type: dataset

Total is 18 Results
Data for Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins

10.4231/0PG5-KC30

Pin-ching Li , Sayan Dey ORCID logo , Venkatesh Mohan Merwade ORCID logo

01/23/2023

This resource contains the data used in the study "Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins" published in Water Resources Research (doi: 10.1029/2023WR034464)

Artificial Neural Network (ANN) covariate shift Hydrology Machine Learning prediction in ungauged basin Random Forest streamflow prediction

Codes for Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins

10.4231/B783-2C47

Pin-ching Li , Sayan Dey ORCID logo , Venkatesh Mohan Merwade ORCID logo

01/23/2023

This resource contains codes used in the study "Analyzing the Effect of Data Splitting and Covariate Shift on Machine Leaning Based Streamflow Prediction in Ungauged Basins" published in Water Resources Research (doi: 10.1029/2023WR034464)

Artificial Neural Network (ANN) Machine Learning Random Forest streamflow prediction

A deep learning neural network to extract of P- and S-wave transit times from Vertical Seismic Profile (VSP)

10.4231/TT0F-KH40

Douglas R Schmitt ORCID logo , Oumeng Zhang ORCID logo

07/23/2024

This archive contains the training dataset and the Python code to train a deep learning neural net that aims to extract separately P and S wave arrival transit times from synthetic common shot gathers (CSG) in a deviated borehole geometry.

deep learning Machine Learning Machine Learning and Geophysical Signals seismic behavior

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information

10.4231/SCF2-QJ02

Koushiki Basu ORCID logo , Nicholas Huls , Shan Lu , Tonglei Li ORCID logo

11/06/2024

We implemented the Manifold Embedding of Molecular Surface approach, which retains the quantum mechanical characteristics of molecules, to predict a drug's likelihood of binding to cytochrome P450 enzymes by deep learning.

deep learning Informatics Machine Learning Molecular Pharmacology

General Aviation Flight Phase Identification using Automatic Dependent Surveillance-Broadcast (ADS-B)

10.4231/X0HZ-MF23

John H Mott , Qilei Zhang ORCID logo

08/23/2021

Dataset including KLAF ADS-B data and synthetic flight data for clustering validation purposes.

ADS-B Aviation Technology Clustering Machine Learning

RoboMal Malware Detection Dataset

10.4231/YN7G-H807

Byung-cheol Min ORCID logo , Haozhe Zhou , Richard Voyles , Upinder Kaur ORCID logo , Xiaxin Shen

10/15/2021

The RoboMal Dataset consists of 450 binary executables designed to facilitate malware detection in robotic software.

Engineering Technology Machine Learning malware Python Robotics security

Multi-Species Prediction of Physiological Traits with Hyper-Spectral Modeling

10.4231/FPHP-0153

Meng-yang Lin , Mitchell R Tuinstra ORCID logo

02/11/2022

High-throughput hyperspectral imaging in corn and sorghum can be used in multi-species models to predict water and nitrogen status of plants within and across these crop species.

Abiotic stress Agronomy Corn Ecophysiology High-throughput Phenotyping Machine Learning nitrogen content partial least square regression relative water content Remote Sensing Sorghum

Structural attributes derived from Google Street View imagery, Louisiana coastal zone

10.4231/1TZX-BR43

David R Johnson ORCID logo , Ed Delp ORCID logo , Fu-Chen Chen ORCID logo , Mohammad Jahanshahi

07/28/2020

Structural attributes relevant to flood risk (foundation height/type, square footage, number of stories, building type), produced using machine learning for automated image analysis of GSV images.

flood risk Industrial Engineering Machine Learning structure attributes

Evaluating Economic Opportunities for Product Recycling via the Sherwood Principle and Machine Learning - Supporting Information

10.4231/E80W-7941

Aihua Huang , John W. Sutherland ORCID logo , Sidi Deng ORCID logo , Xiaoyu Zhou , Yuehwern Yih ORCID logo

09/03/2020

This repository contains the supporting information for the manuscript regarding Sherwood principle and Machine learning. All critical underlying data files, along with a flow chart that describes the methodologies applied in the paper are enclosed.

Circular Economy Empirical Models Environmental and Ecological Engineering Machine Learning Sherwood Principle

Display #

Results 1 - 10 of 18