Datasets

subject: Computer Science type: dataset

Total is 301 Results
32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^4) computed on R by the SOPQ routine sr_freud(100,0,4,32)

10.4231/R7PN93HS

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^4}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^6) computed on R by the SOPQ routine sr_freud(100,0,6,32)

10.4231/R7Z60KZ0

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^6}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematical Concepts Mathematics OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 beta coefficients relative to the Freud weight function w(x)=exp(-x^8) computed on R by the SOPQ routine sr_freud(100,0,8,32)

10.4231/R7TD9V74

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the Freud weight function w(x)=exp(-x^8}) on R are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec. 3 of "Variable-precision recu...

Computer Science Equation Table Freud polynomials Freud weight function Gaussian quadrature Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the half-range Hermite weight function w(x)=exp(-x^2) on R_{+} computed by the SOPQ routine sr_halfrangehermite(100,32)

10.4231/R7X63JTM

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the half-range Hermite weight function w(x)=exp(-x^2) on R_+} are obtained to 32 decimal digits from the first 200 moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Variable-...

Computational methods Computer Science Equation Table Gaussian quadrature Hermite weight function Hilbert Transforms Integral Transforms Mathematics Matlab Numerical integrations OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,-1/2,32)

10.4231/R70Z715M

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^-1/2}(1-x)^-1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "G...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{-1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,-1/2,1/2,32)

10.4231/R79G5JRN

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^-1/2}(1-x)^1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Ga...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{-1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,-1/2,32)

10.4231/R7SF2T39

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^1/2}(1-x)^-1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Ga...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

32-digit values of the first 100 recurrence coefficients relative to the weight function w(x)=x^{1/2}(1-x)^{1/2}log(1/x) on (0,1) computed by the SOPQ routine sr_jacobilog1(100,1/2,1/2,32)

10.4231/R74Q7RWJ

Walter Gautschi

04/22/2014

The first 100 recurrence coefficients for the weight function w(x)=x^1/2}(1-x)^1/2}log(1/x) on (0,1) are obtained to 32 decimal digits from the first 200 modified moments by using Chebyshev's algorithm in sufficiently high precision; cf. Sec.3 of "Gau...

Computer Science Equation Table Gauss-Radau formula Jacobi polynomials Jacobi weight functions Mathematics Matlab OPQ routine Orthogonal polynomials Walter Gautschi Archives

MCD: Matlab programs for computing the Macdonald function for complex orders

10.4231/R7B8562S

Walter Gautschi

04/23/2014

The use of Gaussian quadrature formulae is explored for the computation of the Macdonald function (modified Bessel function) of complex orders and positive arguments. It is shown that for arguments larger than one, Gaussian quadrature applied to the integr...

complex order Computer Science FORTRAN Gauss quadrature approximation Macdonald function Mathematics Matlab software modified Bessel function Quadrature and cubature formulas Software source code Walter Gautschi Archives

Display #

Results 1 - 10 of 301